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Abstract—Robust and effective support for the detection and
management of features and their interactions is crucial for many
software development tasks but has proven to be an elusive
goal despite the extensive research and practice on the subject.
Providing the required support becomes even more challenging
with variable software whereby multiple variants of a system
and their features must be collectively considered. An important
premise to provide better support for feature interactions in
variable systems is the need of a deeper understanding on how
features interact at different levels starting from the source level.
In this context, recent work has looked at feature interactions
from different angles and for different purposes, for instance
for developing performance models, extracting interfaces for
maintenance or describing feature evolution patterns. However,
there is a gap in understanding how features interact in fact at
the source level in contrast with how features ought to interact
according to variability models that describe the valid combina-
tions of features in variable software systems. In this paper we
perform an empirical study to explore this gap. We use seven case
studies, implemented in Java and C, totalling over nine million
LoC, and analysed over seven thousand feature interactions. Our
study revealed important inconsistencies between how feature
interactions occur at source level and how they are modeled,
and corroborated that the majority of source level interactions
involve less than three features. We discuss the implications of
our findings and avenues for further research.

I. INTRODUCTION

Variable software stems primarily from the adoption of
generator-based techniques (e.g. [26], [28]), full-blown Soft-
ware Product Line (SPL) approaches (e.g. [14]), advanced
modularization paradigms (e.g. [9]), or ad hoc reuse practices
collectively called clone-and-own [20], [39]. Typical variable
software systems are formed with a large number of distinct
variants, sometimes in the order of myriads [12]. What distin-
guishes a variant is the set of features – increments in program
functionality [50] – that each variant provides.

The effective development of variable software poses unique
challenges to software engineers not only because the number
of variants and their desired feature combinations should be
collectively considered, but also because their feature inter-
actions must be properly detected, analyzed, and managed.
Broadly speaking, a feature interaction occurs when the be-
haviour of one feature changes depending on the presence
or absence of another feature or set of features [6]. Feature
interactions manifest in a wide range of levels; for example, as
source level artifacts, as unexpected executions, or as changes

in non-functional properties. Research in feature interactions
has a long standing history, and the interest in the subject
has been rekindled in light of recent research developments
in the context of variable software [5]. Despite the extensive
body of research attested by the large number of publications
(e.g. [5], [8], [7], [45], [31]), there are many open and pressing
challenges [5]. Salient among them is the limited understand-
ing on the source level structure of features and how they
interact in real-world systems [5], [6], [11]. A more in-depth
understanding will have far-reaching implications for both
researchers and practitioners. It could lead to better tooling
support for the overall management of feature interactions in
variable software from their detection and analysis all the way
up to exploiting feature interaction knowledge, for instance,
to flexibly and automatically generate test code with adequate
coverage. Emerging results already corroborate the potential
benefits of this endeavour (e.g. [45], [46], [44], [42], [13]).

In this paper we pick up on this challenge and perform an
empirical study [40], [25], [49] that focuses on the structure
of the source level artifacts that implement variable systems.
The main goal of our study is exploring how features interact
in fact at the code level in contrast with how features ought
to interact according to variability models – that describe
the valid combinations of features in variable software sys-
tems [16]. We are interested in answering questions such
as: How many features actually interact at source level?,
What level of granularity (e.g. entire classes or statements)
do feature interactions have?, What proportion of the source
code corresponds to feature interactions?, and How do features
interact according to variability models?. To address these
questions we employed seven case studies totalling over nine
million LoC, implemented in Java and C, and analysed over
seven thousand feature interactions using six software metrics.
Our study revealed important inconsistencies between how
feature interactions occur at source level and how they are
modeled, and that the majority of source level interactions
involve less than three features. We present the implications
of our findings and describe open avenues for further research.

II. BACKGROUND

In this section we provide the background and basic ter-
minology required for our empirical study along with an
illustrative running example.



Artifacts and Granularity. Our study considers source
code artifacts written in languages Java and C. We consider
artifacts as Abstract Syntax Tree (AST) nodes obtained with
parsers from the Eclipse Java Development Tools (JDT) and
C Development Tools (CDT). Henceforth, every AST node is
considered an artifact. From the AST perspective, we regard
artifact granularity as a depth measure from the root of the
AST. The granularity levels and what artifacts they refer to
are shown in Table I for Java and C respectively.

Depth Java C
0 files files
1 classes, interfaces functions, globals, ...
2 fields, methods, ... statements3+ statements

TABLE I: Artifact granularity levels, coarse (top) and fine
(bottom)

Features and Feature Interactions. Within the realm of
variable software there are many definitions or interpretations
for the concept of features [11]. Because the focus of our
study is on source level artifacts, we use Zave’s definition
as our running definition and regard features as increments
in program functionality [50]. Hence, for our study, features
are source code artifacts that implement a given program
functionality. Similarly, there are also multiple conceptions
and interpretations of the concept of feature interactions [5].
We provide our working definition, based on Apel et al.’s
classification [6], as follows:

Definition 1: A structural feature interaction manifests at
source level whenever source level artifacts are included in
a software product because of a combination of selected and
unselected features of a software variant.

Henceforth and unless otherwise stated, whenever we say
feature interaction we mean structural feature interaction.

Base and Derivative Modules. In order to describe and
analyze the structure of source level artifacts and how they
relate to features and their interactions we now introduce the
notion of modules to label the different relationships that can
be identified in the implementing artifacts. This notation and
terminology is further explained in [30], [20], [21]

Definition 2: A module is a set of signed (positive or
negative) features. Positive features denote features selected
in the module whereas negative features represent unselected
(i.e. not present) ones.

We distinguish two kinds of modules defined as follows.
Definition 3: A base module labels artifacts that implement

a given feature without any feature interactions, that is, it con-
sists of exactly one positive feature and no negative features.
We refer to them with the feature’s name written in lowercase.

Definition 4: A derivative module δn(c0, c1, ..., cn) =
{c0, c1, ..., cn} labels artifacts that implement feature inter-
actions, where ci is F (if feature F is positive) or ¬F (if
negative), and n is the order of the derivative. A derivative
module contains at least one positive feature and any number
of negative features.

A derivative module of order n represents the interaction
of n + 1 features. The order of a module denotes how many
features interact in that module. Base modules have order 0,
because they label a single feature and hence do no interact
with any other features. Henceforth, when we say that a
module has order 0 we are speaking of a base module.

Running Example. We now illustrate these definitions on
the example of a drawing application. This application has
several features that can be enabled or disabled to form
variants: feature BASE represents the basic GUI framework
that all variants of the drawing application have in common,
features LINE and RECT are responsible for the functionality
to draw lines and rectangles respectively, and feature COLOR

represents the ability to use colors to draw.
Figure 1 shows a preprocessor annotated code snippet for

generating the variants. The preprocessor annotations (high-
lighted in blue) mark which code parts are responsible for
implementing which features. For example, the field definition
List<Line> lines shown in Lines 2-4 will be included
in class Canvas of all the variants that include feature LINE,
independent of any other features being present. Hence this
field definition must be part of the base module line.

Consider now the code in Lines 16 and 17. For this piece of
code to be included in class Line of a variant the conditions in
Lines 13 and 15 must hold. This means that both features LINE
and COLOR must be selected by such variants, hence these two
lines of code belong to derivative module δ1(line, color)
because they represent feature interaction between features
LINE and COLOR. Similarly, if in a variant the feature LINE

is selected but the feature COLOR is not, then the Lines 19
and 20 will be included in class Line. Hence, these two
lines belong to derivative module δ1(line,¬color) because
they represent the feature interaction of feature LINE being
selected and feature COLOR not being selected. For a detailed
explanation of the rationale behind negative features please
refer to [30].

Variability Models (VMs). An important part of variable
software is to specify the set of different feature combinations
or variants that it comprises, that is the role of variability
models for which there are several alternatives (e.g. [16], [12]).
One of the most commonly used are feature models that are
hierarchical tree-like structures where nodes represent features
and edges denote different types of variability relations [26].
Variability models can be formally described, for instance
using propositional logic, which enables formal reasoning
about their properties. For instance, counting the number of
feature combinations or verifying if a variant with a certain
partial feature combination exists. For further details please
refer to [10].

III. STUDY SETUP

This section describes how our empirical study was set up.
We followed the Goal-Question-Metric (GQM) approach to
describe the underlying goal of our study, the research ques-
tions that we considered and the metrics used for addressing
them [49]. We present the variable systems that constitute



1 class Canvas {
2 #ifdef $LINE
3 List<Line> lines; // line
4 #end
5 #ifdef $RECT
6 List<Rect> rects; // rect
7 #end
8 #ifdef $COLOR
9 void setColor(String c) {...} // color
10 #end
11 ...
12 }
13 #ifdef $LINE
14 class Line {
15 #ifdef $COLOR
16 // derivative δ1(line, color)
17 Line(Color c, Point start) {...}
18 #else
19 // derivative δ1(line,¬color)
20 Line(Point start) {...}
21 #end
22 ...
23 }
24 #end
25 #ifdef $RECT
26 class Rect {
27 #ifdef $COLOR
28 // derivative δ1(rect, color)
29 Rect(Color c, int x, int y) {...}
30 #else
31 // derivative δ1(rect,¬color)
32 Rect(int x, int y) {...}
33 #end
34 ...
35 }
36 #end

Fig. 1: Code example of preprocessor annotations

the corpus of our study and describe the process employed
to collect the data. The results and analysis are presented in
Section IV.

A. Goal and Research Questions

The driving goal of our work is defined as follows:
Goal: Characterize how features and feature interactions

are realized at the source level and contrast their realization
with how they are denoted by the respective variability model.

Our work focuses on answering three basic and fundamental
questions regarding features and their interactions at the source
level.

RQ1. How many features interact at source code level?
Rationale: The number of features that participate in an
interaction is the first reflection of its complexity. We argue
that as the number of interacting features increases so would
the complexity of detecting and managing the interactions.

RQ2. How are features and their interactions realized
by source level artifacts? Rationale: Studying how features
and their interactions are implemented in the source code by
different language elements (e.g. complete classes, methods,
blocks or statements) can provide insights on the complexity

that, for example, analysis tools would have to cope with and
the challenges for program comprehension that users would
have to face.

RQ3. How many features interact according to the
variability models? Rationale: Recall that variability models
denote the feature combinations, and hence feature interac-
tions, that system variants can have. In contrast to RQ1 where
we look at the actual interactions based on the source code,
here we are concerned with the modeled feature interactions
as denoted by variability models. The information gathered
for addressing this question could shed light on the adequacy
of techniques or approaches that blindly rely on variability
models without considering how features are actually realized
in the source code.

B. Metrics

Next we concisely describe the metrics we employed for our
study grouped according to their focus. In stark difference with
other studies summarized in Section V, our set of metrics aims
at providing a more in depth view of feature interactions, how
they are actually realized in the source code and contrast how
they are modeled by their corresponding variability models.

System Size Metrics. These two metrics focus on basic
properties of variable systems.

• Number of Features F . The number of features in a
variable system.

• Number of Lines of Code LoC. The number of lines of
source code in a variable system, not including comments
and empty lines.

Artifact Metrics. The following two metrics focus on the
source code artifacts that implement a variable system. Recall
that we represent artifacts as AST nodes, so these metrics
consider the AST nodes that implement modules.

• Number of Artifacts per Order Ao. The number of AST
nodes in a system that implement modules with order o.
We denote the aggregated artifacts of all orders as A.

• Number of Artifacts per Granularity Level AGd,o. The
number of AST nodes in a system at granularity level d,
i.e. depth in the AST, that implement modules with order
o.

Module Metrics. The following metrics focus on modules,
base and derivatives, that are actually found in the source code
and those described by variability models.

• Number of Modules per Order Mo. The number of
modules of order o identified in the source code of
variable systems. We denote the aggregated modules of
all orders as M .

• Number of Modules per Order in Variability Model
MVMo. The number of modules with order o denoted
by the variability model of a system. We denote the
aggregated modules of all orders as MVM .



Following the GQM approach, Table II summarizes the
alignment of our three research questions with our metrics.
RQ1 focuses on how many features interact which relies on
the order of modules measured by Mo. RQ2 focuses on the
realization of features and their interactions by source level
artifacts which is measured by metrics Ao and AGd,o. Finally,
the focus of RQ3 is features and their interactions from the
variability model perspective which is measured by MVMo.
Note that the systems size metrics, F and LoC, are used for
analysis of correlation with the other metrics.

Research Question Metrics
RQ1 Mo

RQ2 Ao, AGd,o

RQ3 MVMo

TABLE II: GQM alignment of questions and metrics

C. Study Corpus

Table III lists the systems that form the corpus of our
empirical study and the values for some of our metrics. Our
focus was to study variable systems implemented in different
languages. Hence, our corpus includes systems written in Java
and C, the most common languages in variable systems.

We looked for case studies that have been used, by us and
others, for variable software research and practice. For our
selection we had two basic requirements: i) publicly available
and complete source code, and ii) publicly available variability
model. Despite the extensive research in variable software
and feature interactions, summarized in the related work (see
Section V), we found only few systems that met both require-
ments. This was so because the great majority of existing
research either focuses on the extraction of variability models
from different sources (e.g. configuration files) or focuses on
specialized analysis of variable source code artifacts. This
split is in part due to the fact that the research on these
topics is fundamentally carried out by independent groups.
A particularly thorny issue was that the version number of
available source code was not always the same version number
as the variability model. In such cases we fetched from
the corresponding repository the source code with the same
version number of the available variability model.

Let us briefly describe the selected systems. ArgoUML is
an open source project that has been made into a product
line of UML modeling tools [15]. VOD is a product line for
video-on-demand streaming applications [2], [33]. The axTLS
embedded SSL project is a highly configurable client/server
TLSv1 SSL library designed for platforms with small memory
requirements. BusyBox is an open source C project that
combines tiny versions of many common UNIX utilities into
a single small executable providing an environment for any
small or embedded system. Linux is a version of the operating
system kernel source code. OpenSSL is an open source project
for providing commercial-grade SSL and TLS support as
well as a full-strength general purpose cryptography library.
uClibc is an open source C library for developing embedded
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Linux systems. The data of our study corpus is available at
http://www.jku.at/isse/content/e139529/e126342/e219248/e280716.

D. Process Overview
In this section we describe the process followed to gather

the metrics’ data for our study which is depicted in Figure 2.
For every variable system we collected its: i) list of features,
ii) entire source code, and iii) variability model.

The input to our process is the annotated code 1 , similar
to that shown in Figure 1, and a variability model 2 .
Both inputs are received by the variability aware parser 3
that we developed which first harvests the modules and the
implementation artifacts, and stores them in a database 4 .
This variability aware parser creates an AST from the source
code and assigns the artifacts to modules according to the
annotations. There were two special cases to consider in this
parser. The first special case was the source code that was not
annotated at all. We lumped this source code artifacts into an
additional feature which we called CORE and labeled them
with corresponding base module core. Hence this feature
represents the artifacts that are selected for every possible
system variant. Furthermore, we added module core to the
modules we found that had negative features only, which were
hence violating our Definition 4. The second special case
was for parsing the BusyBox, Linux and uClibc systems. The
process for these systems was complicated by the fact that the
selection of which files to process was handled by complex
make and configuration files based on the selection of features.
To address this issue we relied on the information provided
by Kästner et al. who tag source code files with presence
conditions which are propositional formulas that determine
when a file is processed or not [35]. We considered the
presence conditions when computing the modules based on
the annotations.

The database 4 that we used is based on our previous
framework for variable software reuse called ECCO [30], [20],
[21]. The database contains the following output information
for each system: i) the set of modules M , ii) the implemen-
tation artifacts A, iii) a mapping between modules and imple-
mentation artifacts establishing how each module is actually
implemented in the source code, and iv) a graph with the
structural dependencies among artifacts (e.g. field references).
The analysis 5 uses the database and the variability model
to compute all the metrics 6 for each system. In this regard
we should remark a few points. For computing the lines of

http://www.jku.at/isse/content/e139529/e126342/e219248/e280716


System Lang F V C LoC A M MVM∗ Source
ArgoUML Java 11 11 13 180.4K 1456.9K 25 441 http://argouml-spl.tigris.org/

VOD Java 11 11 16 4.6K 35.2K 32 408 Based on [2], [33]
axTLS 1.2.7 C 90 684 2155 28K 141.4K 65 6404378 http://axtls.sourceforge.net//

BusyBox 1.18.5 C 651 6796 17836 333.3K 1417.8K 395 634738 http://www.busybox.net/
Linux 2.6.33.3 C 11004 31713 293826 8176.3K 5.6E7 5608 ≈2.13E19 https://www.kernel.org/

OpenSSL 1.0.1c C 589 589 17 381.9K 1851.3K 962 ≈1.32E24 https://www.openssl.org/
uClibc 0.9.33.2 C 137 6408 35632 315.9K 2123.8K 259 ≈1.18E10 http://www.uclibc.org/

Lang: Implementation Language, F : Number of Features, V : Number of Variables in the CNF Variability Model,
C: Number of Clauses in the CNF Variability Model, LoC: Number of Lines of Code, A: Number of Distinct Artifacts, M : Number of Modules,

MVM∗: Number of Modules in the Variability Model up to the highest order found in the implementation

TABLE III: Variable Systems Overview

code (LoC) we used the Count Lines of Code tool [1], which
distinguishes between blank lines, comments and actual code.
In Table III we report the number of actual lines of code. For
the computation of the metric MVMo we used the SAT solver
Sat4J [3]. Checking if a module is denoted by a variability
model is a straightforward process that uses the standard
mapping of variability models to CNF (please refer to [10])
to which we add the features (positive and negative) labeled
by the module as additional CNF clauses. In Table III the
column MVM shows the number of modules in the variability
model up to the order for which we actually found source level
artifacts.

For OpenSSL, uClibc and Linux it was not feasible to com-
pute all theoretically possible modules MVM in a reasonable
amount of time due to the large number of features and the
complexity of the constraints in their variability models [12].
For these systems we used an estimation similar to the one
used by Henard et al. [22]. For this estimation we computed
1000 random modules for each order o and checked how
many of these random modules are valid in the variability
model. The actual number of modules in the variability model
can then be estimated from the upper bound of theoretically
possible modules of a variability model with F features and
no constraints, which is at most

(
F

o+1

)
∗ (2o+1 − 1), that is,

the number of combinations of o+1 features (since the order
is the number of features minus one) in all F features times
the possible combinations of features (negative and positive)
minus one (to exclude the one module with all negative
features which does not adhere to our definition of derivative
modules). For instance, if 800 of the 1000 samples exist in the
variability model, the estimated number of modules of order
o is equal to 800

1000 ∗
(

F
o+1

)
∗ (2o+1 − 1).

IV. RESULTS AND ANALYSIS

In this section we concisely present the results obtained
for each research question, their collective analyses, and the
threats to validity we identified in our study.

A. Research Questions Results

RQ1. How many features interact at source code level?: To
answer this question Figure 3a shows the number of modules
per order Mo and Figure 3b shows the percentage of modules
per order in relation to the total number of modules in each
system. The modules over all orders add up to M and 100%

respectively. The graphs show a similar pattern for all systems.
Most of the modules that exist are of order 1, i.e. modules that
implement interactions of two features, followed by modules
of order 0, i.e. base modules. The only exception is the
system BusyBox where there exist almost solely base modules
because almost all of the presence conditions consist of single
features and are placed in the GNU-build system at a coarse
level (i.e. entire files) and almost no annotations within files
exist.

We analyzed the relations between number of modules M
with number of features F and LoC. We found, as expected,
strong correlations respectively with values 0.993 and 0.992
using the Pearson Product-Moment Correlation. Furthermore,
as shown in Figure 3c, our results indicate that the number of
modules appears to only increase linearly with the number of
features even though every additional feature could potentially
interact with every combination of other features. This finding
is an indication that the number of interacting features is
bounded.

RQ2. How are features and their interactions realized by
source code artifacts?: To address this question we first
considered how artifacts distribute per order. We investigate
this issue because even if higher order modules are rare they
could still involve a large part of the source code artifacts.
Figure 4a shows the results, which uses the metric of number
of artifacts per order Ao plotted as percentage of the total
number of artifacts A. This figure shows that the majority
of artifacts implement modules of order 0 and only very few
implement modules of an order higher than 3.

Secondly, we analyze the relation between the number of
features F and the number of artifacts as shown in Figure 4b.
While the number of artifacts implementing an individual
feature is very specific to each feature, the total number of
artifacts tends to increase with the number of features of the
system.

Thirdly, since LoC is a more common metric than number
of artifacts, we also studied their correlation. As could have
been expected, these two metrics have a strong correlation
(see Figure 4c), with a Pearson Product-Moment Correlation
Coefficient of 0.9998.

Fourthly, we analyzed the number of artifacts per module
order at different granularity levels. We were interested in
knowing whether modules of different orders are implemented
by artifacts of different granularities. Figure 5 shows one

http://argouml-spl.tigris.org/
http://axtls.sourceforge.net//
http://www.busybox.net/
https://www.kernel.org/
https://www.openssl.org/
http://www.uclibc.org/
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Fig. 3: RQ1. How many features interact.

bubble plot per case study system. The bubble size corre-
sponds to the number of artifacts per granularity and order
AGd,o which we plot scaled by a factor f for sake of better
visualization. In all systems most artifacts are around depth 5
(corresponding to statements) and implement modules of order
0. Only systems Linux and uClibc also have bigger portions of
artifacts implementing modules of order 1 and even 2. While
there is a difference in the number of artifacts for different
orders, we did not find a relevant difference in their depth.
Summarizing, higher order modules and lower level modules
are similarly spread along the granularity levels. However,
lower level modules have a larger number.

RQ3. How many features interact according to the vari-
ability models?: To address this question we relate per order
the existing modules Mo, those extracted from the systems’
artifacts, with the number of modules as denoted by the
variability models MVMo. The result is shown in Figure 6a.
We found that this percentage decreases with order and that
modules of order 0 (i.e. base modules) are the ones with
the highest percentage of existing modules across all systems.
The highest value being 83% for VOD and the lowest being
Linux with 18%. Notice that we would expect every base
module to exist; however, that is not the case. This is because
some features are only implemented in first order (or generally
higher order) modules, i.e. they are not implemented by any
base module. Such features require the presence of other
features and are encapsulated within those features, i.e. the
annotations of those features in the source code are always
wrapped inside annotations of the required features (i.e. the
annotations are nested). For example, the annotation of feature
COLOR of our running example in Figure 1 at Line 15 is
wrapped inside the annotation of feature LINE at Line 13.

B. Analysis
In this section we concisely analyze and summarize the most

salient findings of our study.
Pre-eminence of Low Order Modules. Our study found

that across all systems most modules are of orders 0 to 2,
not only in number but also considering the proportion of

implementation artifacts where modules of order 0, i.e. base
modules, contain the bulk of the code.

Pre-eminence of Fine Granularity Artifacts. Our study
revealed that the majority of source code artifacts are at the
level of statements or below. Furthermore, the distribution of
granularity is independent of module order, in other words,
high order modules as well as low order modules favour
artifacts of fine granularity.

Larger Systems Do Not Have More Complex Feature
Interactions. We found that systems with more features tend
to have more modules and artifacts, but not necessarily have
interactions of higher order. Interesting is also that the number
of modules seems to only increase linearly with the number of
features even though every feature could potentially interact
with every combination of all other features.

Modules Denoted by Variability Models Outnumber
Those with Implementation Artifacts. Our study found that
for orders higher than 0 only a very small subset of modules
denoted by the variability model actually have implementation
artifacts. This is in part due to the extremely large number
of possible modules denoted in the variability models, as
estimated for our larger systems, but it is also an observation
made for our small systems.

Existence of Dead Modules. While analyzing the systems
in more detail we found that in Linux and OpenSSL, some
modules that exist in the source code should not exist ac-
cording to the variability model. In other words, the imple-
mentations of these two systems contain modules that are not
included in any of the variants that can be configured according
to their variability models. We therefore refer to these modules
as dead modules. The number of dead modules for these two
systems is shown in Figure 6b and the percentage of dead
modules over the total number of modules is depicted along
module order in Figure 6c.

The last two findings are clear indications of inconsistencies
between how a variable system is modeled (i.e. the variability
model) and how it is actually implemented. Whether these in-
consistencies are intentional by the developers or an unwanted



0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

Order o

A
rt

ifa
ct

s
A

o

A
[%

]

(a) Percentage of Artifacts per Order

101 102 103 104

105

106

107

108

Features F

A
rt

ifa
ct

s
A

(b) Number of Artifacts A over Number of
Features F (line shows linear regression)

104 105 106 107

105

106

107

108

Lines of Code LoC

A
rt

ifa
ct

s
A

(c) Number of Artifacts A over LoC (line
shows linear regression)

ArgoUML VOD axTLS BusyBox Linux OpenSSL uClibc

Fig. 4: RQ2. Artifacts, their order, and their relation with F and LoC

0 1 2

0

5

10

15

20

Order o

D
ep

th
d

(a) ArgoUML (f = 0.00005)

0 1 2

0

5

10

15

20

Order o

D
ep

th
d

(b) VOD (f = 0.001)

0 1 2

0

5

10

15

20

Order o

D
ep

th
d

(c) axTLS (f = 0.0005)

0 1

0

5

10

15

20

Order o

D
ep

th
d

(d) BusyBox (f = 0.00005)

0 1 2 3 4 5

0

5

10

15

20

Order o

D
ep

th
d

(e) Linux (f = 0.000002)

0 1 2 3 4 5 6 7 8 9

0

5

10

15

20

Order o

D
ep

th
d

(f) OpenSSL (f = 0.00003)

0 1 2 3 4

0

5

10

15

20

Order o

D
ep

th
d

(g) uClibc (f = 0.00005)

Fig. 5: RQ2. Number of Artifacts AGd,o (scaled by factor f ) per Granularity (i.e. Depth in AST) and Module Order

bug is an open question outside the scope of this paper.

C. Threats to Validity

In this subsection we describe the threats to validity that we
identified in our work, based on the guidelines presented in
[49], and how we addressed them.

The first threat was the selection of the variable systems
considered in our study. We addressed this threat by including
systems that have been extensively studied by ourselves and
others, see Section V, and hence are deemed representative of
variable software. We included all systems for which complete
source code artifacts and corresponding variability models
were publicly available and those for which we found ways

to achieve internal consistency, as we described in Subsec-
tion III-D. These systems happened to be implemented with
pre-processor annotations. Certainly, other variable systems
might have yielded different results. As part of our future work
we plan to expand our study to include more variable systems
that use other variability management approaches (e.g. fea-
ture orientation) and are implemented in other programming
languages.

The second threat can stem from the elaborated process
we used to gather and analyze the metrics data as described
in Subsection III-D. We addressed this threat by performing
multiple cross-checks and validations both on our data and
process as well as those coming from third parties.
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The third threat is the choice of metrics to answer our re-
search questions. We do acknowledge that there is an extensive
body of research on software system metrics for different types
of systems and with different purposes and goals. For our
study, we selected the metrics that we believe best reflect the
fundamental aspects of our research questions. We informed
our decisions based on the work of Meneely et al. [34] and
Wholin et al. [49].

The fourth threat concerns the generalization of our findings.
Our study focused on structural features and structural feature
interactions, the most fundamental type of interactions. As it is
summarized in the related work, Section V, there is extensive
research on other types of feature interactions that involve, for
instance, control-flow analysis. Hence, studying whether our
findings also hold for those types of interactions is outside the
scope of this work, but nonetheless an avenue worth of future
research.

V. RELATED WORK

There is an extensive body of research related to our work.
In this section we briefly describe those pieces of work closest
to ours categorized by main topics.

Relationship between variability models and implemen-
tation artifacts. Tartler et al. describe for Linux four different
types of inconsistencies between implementation artifacts and
their configuration [47]. Subsequent work by Nadi et al.
focuses on the inconsistencies where pre-processor conditions
contain variables that are not defined in a variability model
(i.e. inferred from KConfig files in their case) and how they
were fixed [36]. Our findings complement their work because
we looked in further detail at dead modules, i.e. code frag-
ments whose annotations are not valid feature combinations
according to their variability model, not only for Linux but
also in the OpenSSL case study. Passos et al. developed a
catalogue of coevolution patterns for the Linux kernel that
captures the changes that occur in the variability model and
how they impact the implementation artifacts [37]. Hence,

their focus in on evolution patterns not in characterizing how
features interact.

Variable Software Metrics. Kästner et al. raise the issue
of granularity of features in SPLs [27], for which Liebig et
al. propose five metrics to analyze its impact for program
comprehension and refactoring [28]. Queiroz et al. analyze the
distribution of three metrics on C-based preprocessor systems
and propose thresholds for them [38]. Hunsen et al. performed
a study that compared preprocessor-based variability in open
source projects and how they relate to industrial software
systems [23]. They found that the knowledge, insights, and
tooling developed from open source projects is indeed trans-
ferable to industry-strength systems. In stark contrast with all
these works, our work provides a focused, encompassing, and
detailed perspective on the source level features and feature
interactions, using a different set of metrics and taking in
consideration the role and impact of the variability model.

Variable Software Analysis. In recent years, there has been
an increasing interest in devising strategies to analyze SPLs. A
survey and classification for static strategies has been proposed
by Thüm et al. that considers over a hundred of research
articles [48]. The static strategies their work considers are:
type checking, conventional static analyses (e.g. control flow),
model checking, and program verification. Salient among the
surveyed works is Liebig et al.’s who propose an approach
for variability-aware type checking and liveness analysis that
enhances traditional static analyses and AST representations
with variability knowledge stemming from annotations in C
code and variability models, for example, derived from con-
figuration files [29]. Along the same lines, Cafeo et al. propose
an approach that employs a clustering algorithm to segregate
members of feature interfaces that are relevant for maintenance
tasks from those that are not [13]. In stark contrast with all
these works our focus is on measuring source level features
and their interactions. Related to this topic is the work of Dit et
al. that provide a survey and taxonomy of feature location [18].
However, their work is not focused on variable software, where
feature location entails considering that features can be present



in different combinations to form a typically large number of
different variants.

Variable Software Testing. There is an extensive and recent
interest in the area of SPL testing as attested by several
systematic mapping studies (e.g. [19], [17]). Salient among the
identified techniques was Combinatorial Interaction Testing
(CIT), that when applied to SPLs advocates selecting sets of
system variants, called covering arrays, whose combinations
of features contain all possible combinations according to
a variability model of a given number t of selected and
unselected features. This number t is called the strength of the
covering array and within the context of our study corresponds
to the order of feature interactions minus one. For example, a
covering array of t = 2 (also called pairwise) is a set of system
variants whose feature combinations consider all the interac-
tions of order 1. We performed a systematic mapping study to
delve into more detail in the subject, and identified over forty
different CIT approaches for SPL testing that rely on different
techniques (e.g. genetic or greedy algorithms) evaluated on
multiple problem domains of different characteristics [32].
Among other findings, our mapping study revealed that the
large majority of approaches focuses only on computing the
samples of products to test based purely on variability models
(e.g. feature models) without considering how the distinct
feature combinations are actually implemented, in other words,
they are oblivious to how features interact when they are
realized. Another related common thread in the surveyed
approaches is that they do not empirically show that higher
coverage strengths (i.e. t > 3) are more effective for fault
detection to actually pay off for their typically more expensive
computation. Exploiting the information obtained in our study
can lead computing of more accurate covering arrays that do
not test combinations of features that do not interact hence
significantly reducing the overall testing effort.

VI. IMPLICATIONS OF FINDINGS

In this section we put forward the main implications of our
empirical study based on our analysis, Subsection IV-B, and
the broader context provided by the related work.

Sampling Analysis Techniques for Variable Systems.
There exist several techniques that rely on sampling to se-
lect the variants subject to the analysis [48]. To the best
of our knowledge, none of such strategies study or exploit
any knowledge or insights similar to those derived from our
empirical study. We argue that tool developers and users of
those and similar approaches can benefit from our work for
instance to select or adapt sampling heuristics depending on
the characteristics of the variable systems, that is, by reducing
their sampling space based on how feature interactions are in
fact realized and not on how they ought to interact according
to some variability model. This, we believe, is a promising
avenue for further research.

CIT for SPLs. CIT approaches that focus on selecting
variants based on their artifact structure can benefit from our
findings. Our study empirically showed that feature interac-
tions of more than two features are, for the most part, rare.

Hence, software engineers could decide to opt for computing
pairwise covering arrays when higher strengths are infeasible
or computationally expensive for their concrete contexts. Early
evidence seems to suggest that covering arrays of flexible
strength that consider the actual structural feature interactions
could prove more effective for fault detection than covering
arrays of high and fixed strengths [46]. Our findings strongly
suggest such possibility, which we argue is worth of further
research.

Adequacy of Variability Models. Our study found a large
gap between interactions as denoted by the variability models
and the interactions actually observed at the code level. In the
best of scenarios this gap could cause unnecessary computa-
tional effort but at worst it could render reasoning techniques
infeasible or unreliable. We propose that analysis techniques
that heavily rely on variability models should question and
consider the adequacy of these models for their concrete
domains.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented the results of our empirical study
that focused on structural feature interactions. We formulated
and addressed three fundamental research questions that shed
light on the characteristics of such interactions. Our work
revealed the existence of a significant percentage of dead
modules (those that should not exist according to the respective
variability model) present in two of the analyzed systems, and
that the interactions at the code level are greatly outnumbered
by the interactions computed from the variability model.
Among other findings were that most of the interactions
involved less than three features and happen with fine grain
source code elements (i.e. statement level). We place our
study into a comprehensive review of the related research,
and highlight the implications of our findings and avenues for
further research.

We now sketch the most important items of our future
work. First, we plan to expand our empirical study to consider
other programming languages, other variability mechanisms,
and consequently more examples of publicly available variable
systems. Our purpose is to further explore the impact of these
two factors. Second, we plan to go beyond structural interac-
tions to include data flow and control flow analyses. Our goal
is to analyze how the additional knowledge changes, or not, the
modules’ boundaries at structural level. For instance, we want
to find out if more features interact when considering control
flow information, in other words, does control flow affect
module orders? Third, we want to assess how beneficial it is to
consider the knowledge of structural feature interactions when
employing CIT for SPL testing. We are currently evaluating
two systems in this regard [4], [41].
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of the variability in forty preprocessor-based software product lines. In
ICSE, pages 105–114, 2010.
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[43] W. Schäfer, M. B. Dwyer, and V. Gruhn, editors. 30th International
Conference on Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, 2008. ACM, 2008.

[44] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner. Performance-
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